Ca2+-pumps and Na+–Ca2+-exchangers in coronary artery endothelium versus smooth muscle
نویسندگان
چکیده
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.
منابع مشابه
Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in...
متن کاملDecreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization.
Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45Ca2+ fluxes similar to those evo...
متن کاملCalcium buffering in coronary smooth muscle after chronic occlusion and exercise training.
OBJECTIVE Exercise promotes "sarcoplasmic reticulum (SR) Ca2+ unloading" in porcine coronary smooth muscle, resulting in decreased agonist-induced Ca2+ release. We studied Ca2+ handling in healthy, non-occluded right coronary artery cells from hearts chronically occluded at the circumflex artery. METHODS Myoplasmic free Ca2+ (Ca(m)) was assessed with fura-2 in cells from sedentary (n=8) and a...
متن کاملEndothelin-induced changes in intracellular pH and Ca2+ in coronary smooth muscle: role of Na(+)-H+ exchange.
The relationship between endothelin-1 (ET-1)-induced stimulation of Na(+)-H+ exchange and intracellular free Ca2+ ([Ca2+]i) was examined in primary cultures of porcine coronary artery smooth muscle cells. Intracellular pH (pHi) and [Ca2+]i were measured using 2,7-bis-carboxyethyl-5(6)-carboxyfluorescein and the acetoxymethyl ester of fura-2 respectively. In HCO3(-)-free buffer (pH = 7.4), ET-1 ...
متن کاملPeroxide resistance of ER Ca2+ pump in endothelium: implications to coronary artery function.
We examined the effects of peroxide on the sarco(endo)plasmic reticulum Ca2+ (SERCA) pump in pig coronary artery endothelium and smooth muscle at three organizational levels: Ca2+ transport in permeabilized cells, cytosolic Ca2+ concentration in intact cells, and contractile function of artery rings. We monitored the ATP-dependent, azide-insensitive, oxalate-stimulated45Ca2+uptake by saponin-pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2007